Loss of aboveground forest biomass and landscape biomass variability in Missouri, US
نویسندگان
چکیده
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters 13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 onehectare plots using random diameters generated from parameters of diameter distributions limited to diameters 13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration. 2015 Elsevier B.V. All rights reserved. * Corresponding author. Tel.: +1 573 875 5341x230; fax: +1 573 882 1977. E-mail address: [email protected] (B.B. Hanberry).
منابع مشابه
Effects of Model Choice and Forest Structure on Inventory-Based Estimations of Puerto Rican Forest Biomass
—Total aboveground live tree biomass in Puerto Rican lower montane wet, subtropical wet, subtropical moist and subtropical dry forests was estimated using data from two forest inventories and published regression equations. Multiple potentially-applicable published biomass models existed for some forested life zones, and their estimates tended to diverge with increasing tree diameter at breast ...
متن کاملCajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia
Climate change and land-use activities are increasing fire activity across much of the Siberian boreal forest, yet the climate feedbacks from forest disturbances remain difficult to quantify due to limited information on forest biomass distribution, disturbance regimes and post-disturbance ecosystem recovery. Our primary objective here was to analyse post-fire accumulation of Cajander larch (La...
متن کاملPotential of Landsat-8 spectral indices to estimate forest biomass
Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...
متن کاملTotal aboveground biomass in central Amazonian rainforests: a landscape-scale study
Amazonian forests play a key role in the global carbon cycle, but there is much uncertainty about the quantity and distribution of carbon stored in these forests. We quantified total aboveground dry biomass (TAGB) in undisturbed central Amazonian rainforests, based on detailed estimates of all live and dead plant material within 20 1 ha plots spanning an extensive (ca. 1000 km) study area. TAGB...
متن کاملImpact of spatial variability of tropical forest structure on radar estimation of aboveground biomass
a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA b Dept. of Atmospheric Sciences, University of California, Los Angeles, CA 90095, USA c Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA d International Center for Tropical Ecology, University of Missouri, USA e Dep. of Natural Resource Ecology, and Management...
متن کامل